Piecewise Rigid Body Mechanics
نویسندگان
چکیده
We propose a new three-dimensional dynamic theory of transforming materials intended to make realistic simulations of the dynamic behavior of these materials accessible. The theory is appropriate for materials whose free energy function rises steeply from its energy wells. Essentially, the theory is the multiwell analog of ordinary rigid body mechanics with three additional features: the full stress is not treated as arbitrary (the average limiting tractions on each interface enter the theory as unknowns), a certain component of the local balance of linear momentum is used, and kinetic laws for interfacial motion are introduced based on ideas of Eshelby and Abeyaratne and Knowles. In an interesting special case of the resulting equations of motion, all material constants together with all information about the shape of the body collapse to a single dimensionless constant. We prove well-posedness up to the time of a collision between interfaces, and do a preliminary study of the problem of annihilation and nucleation of interfaces. Conservation laws and a dissipation inequality are identified. We also give generalizations of the theory to magnetic and thermodynamic piecewise rigid media. A probable application area for the theory is the assessment of the use of transforming materials at small scale as “motors” for propulsion or actuation.
منابع مشابه
Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review
The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...
متن کاملPiecewise Rigidity
In this paper we provide a Liouville type theorem in the framework of fracture mechanics, and more precisely in the theory of SBV deformations for cracked bodies. We prove the following rigidity result: if u ∈ SBV (Ω, RN ) is a deformation of Ω whose associated crack Ju has finite energy in the sense of Griffith’s theory (i.e., HN−1(Ju) <∞), and whose approximate gradient ∇u is almost everywher...
متن کاملGeometry and Control of Three-Wave Interactions
The integrable structure of the three-wave equations is discussed in the setting of geometric mechanics. Lie-Poisson structures with quadratic Hamiltonian are associated with the three-wave equations through the Lie algebras su(3) and su(2, 1). A second structure having cubic Hamiltonian is shown to be compatible. The analogy between this system and the rigid-body or Euler equations is discusse...
متن کاملEuler-Lagrange equations and geometric mechanics on Lie groups with potential
Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...
متن کاملComputational Geometric Mechanics and Control of Rigid Bodies
COMPUTATIONAL GEOMETRIC MECHANICS AND CONTROL OF RIGID BODIES
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2003